Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme.

نویسندگان

  • O Pänke
  • D A Cherepanov
  • K Gumbiowski
  • S Engelbrecht
  • W Junge
چکیده

ATP synthase (F(O)F(1)) operates as two rotary motor/generators coupled by a common shaft. Both portions, F(1) and F(O), are rotary steppers. Their symmetries are mismatched (C(3) versus C(10-14)). We used the curvature of fluorescent actin filaments, attached to the rotating c-ring, as a spring balance (flexural rigidity of 8. 10(-26) Nm(2)) to gauge the angular profile of the output torque at F(O) during ATP hydrolysis by F(1) (see theoretical companion article (. Biophys. J. 81:1234-1244.)). The large average output torque (50 +/- 6 pN. nm) proved the absence of any slip. Variations of the torque were small, and the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the threefold stepping and high activation barrier of the driving motor proper, the rather constant output torque implied a soft elastic power transmission between F(1) and F(O). It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate of the two counteracting and stepping motor/generators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: curvature as an indicator of the torque.

ATP synthase (F-ATPase) operates as an electrochemical-to-mechanical-to-chemical energy transducer with an astounding 360 degrees rotary motion of subunits epsilongammac(10-14) (rotor) against delta(alphabeta)(3)ab(2) (stator). The enzyme's torque as a function of the angular reaction coordinate in relation to ATP-synthesis/hydrolysis, internal elasticity, and external load has remained an impo...

متن کامل

High-speed atomic force microscopy of protein dynamics: myosin on actin and rotary enzyme F1-ATPase

AFM allows the visualization of biological samples under physiological solution conditions, at high spatial resolution. However, captured images are limited to snapshots because it takes at least 30 seconds to capture an image, whereas biological phenomena are highly dynamic. To overcome this limitation, my group has developed high-speed AFM. The dynamic processes and structural dynamics of pro...

متن کامل

Modeling the evolution of cells outgrowth due to the force exerted by actins

Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...

متن کامل

Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk.

ATP is synthesized by ATP synthase (F(O)F(1)-ATPase). Its rotary electromotor (F(O)) translocates protons (in some organisms sodium cations) and generates torque to drive the rotary chemical generator (F(1)). Elastic power transmission between F(O) and F(1) is essential for smoothing the cooperation of these stepping motors, thereby increasing their kinetic efficiency. A particularly compliant ...

متن کامل

Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase.

We combine molecular simulations and mechanical modeling to explore the mechanism of energy conversion in the coupled rotary motors of FoF1-ATP synthase. A torsional viscoelastic model with frictional dissipation quantitatively reproduces the dynamics and energetics seen in atomistic molecular dynamics simulations of torque-driven γ-subunit rotation in the F1-ATPase rotary motor. The torsional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 81 3  شماره 

صفحات  -

تاریخ انتشار 2001